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ABSTRACT

Most of the real world problems are NP hard in nature those are difficult to be solved with

traditional mathematical approaches. Optimization is a global search technique which is ap-

plicable to almost every domain of engineering, sciences, management and social life. Tradi-

tional mathematic based search techniques are outperformed by the evolutionary algorithms.

Most of the evolutionary algorithms have been developed on the basis of meta-heuristics of

natural systems. These evolutionary algorithms are stochastic in nature and capable of

evolving near optimal solutions in reasonable amount of time.

Fuzzy logic is another paradigm that belongs to computational intelligence and is capable of

handling uncertain/imprecise data. Most of Fuzzy Logic Systems (FLSs) are developed based

on two different approaches, firstly model-based approach in which objective information is

represented by mathematical models and subjective information is represented by linguistics

statements that then are converted into rules secondly, model-free approach in which rules are

expected from numerical data and are then combined using linguistic information collected

from experts. Designing an FLS is itself an NP hard problem. It contains four components

Rules, Fuzzifier, Inference engine, Defuzzifier. Once rules have been established an FLS can

be viewed as mapping from inputs to the output and this can be expressed quantitatively

as y=f(x) where f is highly non-linear and high order differential mapping of multiple crisp

inputs with that of single (multiple) crisp outputs(s). The linguistic knowledge collected

from experts is represented in the form of fuzzy rules. The rules are constructed using the

collection of fuzzy if/then statements depending upon the possible combinations of input

and output variables. The if part of the fuzzy rule represents the antecedent and then part

represent the consequent. Both antecedents and consequents are represented using fuzzy sets

viii
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(defined by membership functions). The curve of membership function defines the degree of

truth for each element in the input space.

Mackey-Glass time series forecasting is a benchmark problem which is used to study the

behavior of dynamically varying systems like weather and climate. The application is used

to predict the value at time period t depending upon the values at previous time periods

(t-1), (t-2), (t-3), (t-4). Therefore the FLS is designed with 4-inputs and 1-output value.

Each input value has 4 Type-1 Gaussian membership functions. Following the different

possible combinations of the input membership functions the no. of possible rules becomes

44=256 with each rule comprising 4 antecedent membership functions from each input i.e.

total of 4×256=1024 membership functions. Further each Gaussian membership function

is defined by 2 parameters, i.e., mean (m) and sigma (?). Hence we have to deal with

total 2×1024=2048 number of parameters in order to design our FLS. Generating fuzzy

rules is the most important requirement to design a FLS. As we does not need to use all

the possible rules so for the good performance of the system we need to search the best

possible rules from all the possible rules. Searching for the best possible rule set from such

a high dimension search space using conventional optimizations techniques becomes highly

complicated. Genetic Algorithm (GA) is an effective optimization tool inspired by the process

of evolution in natural systems. It is a powerful technique to search suitable solutions to

various optimization problems. So instead of using conventional methods GA is one of the

most popular Evolutionary Algorithm for searching optimal solution.

The work presented in this thesis is about the methodology to evolve optimal design of FLS

where fuzzy sets are designed using fuzzy c-mean clustering algorithm and fuzzy sets are

evolved by GA. Initially the randomly generated rule sets are encoded as GA population

of chromosomes. Fitness of each chromosome is calculated using a fitness function which is

problem specific. The fitness function used for time-series forecasting problem is the Mean

Square Error (MSE). MSE is calculated by comparing the forecasted outputs from the FLS

with that of the actual outputs. Lesser is the value of MSE, higher is the fitness of the

chromosome. In order to select the best chromosomes for the next generation Roulette

wheel concept is used. Using Roulette wheel selection the chromosomes with higher fitness

are more likely to be selected for the succeeding generation. After selection the crossover

operator interchanges the gene values between the parent chromosomes to produce better

offspring. The values of the genes are varied using mutation operators. The newly generated

population is fed back to the FLS as a new improved rule set. The population again undergoes

selection, crossover and mutation to produce new improved population. So, GA iteratively



x

improves the performance of the system by reducing the value MSE hence increasing the

value of fitness level. The system was evolved for different number of rules i.e. 2, 4, 6, 8, 10,

15, 20, 25, 30. It can be observed from the simulation results that the system with 10 rules

evolved with least value of MSE and hence performed better. The average value of MSE

obtained was found to be 1.15410−2 using 10 rules in the rule set. Therefore the designed

system was found to be the best for time-series forecasting with least value of MSE.

Although the designed system for evolution of the best solution is very effective for solving

time-series problem, their execution time can become a limiting factor as it involves large

number of parameters that are to be determined making it computationally intensive.

Place: Ferozepur Shivani Kakkar

Date: October 19, 2015 (1322788)
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Abbreviations Description
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Abbreviations Description

RCGA Real Coded Genetic Algorithm
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NOTATIONS
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pi Selection probability of an ith individual

m Mean
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CHAPTER 1

INTRODUCTION

Optimization is a global search technique which is applicable to almost every domain of sci-

ence, management and social life. Evolutionary computation have been developed on the

basis of meta-heuristics of natural systems. These are stochastic in nature and are found to

evolve near optimal solutions to various optimization problem in reasonable amount of time.

Genetic Algorithm (GA) is one of the amazing techniques of evolutionary computation which

is based on the process of evolution in various natural systems. Fuzzy Logic Systems (FLS)

which is capable of handling uncertainty/imprecision lacks self learning and generalization

of rules [Cordón et al., 1996]. FLS when integrated with GA for the process of evolution of

rules outperforms the traditional methods of optimization. This thesis work presents the im-

plementation of evolving a FLS using GA for Mackey-Glass time series forecasting problem

and also the performance analysis of the designed FLS is discussed for different number of

IF-THEN fuzzy rules.

1.1 Introduction

1.1.1 Fuzzy Logic System

FLS introduced by Lotfi A. Zadeh [Mendel, 1995], [Zadeh, 1974] is that class of computational

intelligence which provides us with a provision to deal with uncertainty or the knowledge

which do not have well defined sharp boundaries. Fuzzy Logic (FL) has been extended to

handle the concept of partial truth, where the truth value may range between completely true

and completely false. FLS [Cordón et al., 1996] employ the use of linguistics variables which

1



CHAPTER 1. INTRODUCTION 2

are used to define FL rules. A linguistic variable such as temperature may be represented

as high or low depending upon its numeric value. Therefore FLS are highly non-linear in

nature which have the capability to in fer the complex non-linear relationship between input

and output variables [Mendel and Mouzouris, 1997]. FLS constitute four parts, i.e, fuzzifier,

rulebase, inference engine and defuzzifier. Going through various levels of uncertainty for

every crisp input we get a crisp output from an FLS. Designing an FLS is considered as a

complex task where we need to decide the most optimal set of input/output pairs from the

large number of possible input/output pairs in the form of rules. Traditional optimization

techniques have certain limitations which can be easily outperformed by the evolutionary

algorithm techniques like GA.

1.1.2 Evolving FLS using GA

GA introduced in [Holland, 1975], [Holland, 1973] is a powerful technique inspired by the

Darwinian Theory of Survival of Fittest in various natural systems [De Giovanni and Pezzella,

2010]. GA is domain independent paradigm which has the capability to search near optimal

solutions to arbitrary optimization problems. So, GA starts with the random initialization

of population of parent chromosomes for the purpose of automatic evolution of the parent

chromosomes using various GA operators like Selection, Crossover, Mutation and Elite. GA

[[Sinha and Singh, 2014] is widely used as an optimization tools in various fields such as

medical, engineering and finance [Kumar et al., 2012] can also be used for the purpose of

automatic evolution using crossover, mutation and survival of the fittest [Sinha and Singh,

2014]. GA starts with initialization of random population consisting of vectors of chromo-

somes [Shi et al., 1999]. After that the fitness for each chromosome in the population is

calculated using some standard fitness function. A new population is generated by applying

crossover and mutation over selected chromosomes. Selection is most commonly performed

using a “Roulette wheel” mechanism. The next step crossover involves the interchanging of

some values of 2 parent chromosomes depending upon the crossover probability [Shi et al.,

1999] is performed which stands for changing the values of the elements of the population

randomly using mutation probability. The all new population is generated now which is

copied back to the initial population in order to calculate the new fitness values. The new

population will yield the improved values of fitness. The whole algorithm repeats until some

required condition is not met. GA iterate number of times to generate the new improved

population of offspring chromosomes until the terminating criteria is not met.

Evolving FLS using GA involves producing the best possible set of rules required to design

an FLS. Initially the fuzzy logic rules which are to be evolved are generated randomly.

Randomly generated rule sets are encoded as GA population in order to search for the best

rule set from the present pool of rule sets.



CHAPTER 1. INTRODUCTION 3

1.2 Mackey-Glass Time-Series

Mackey-Glass time series is a benchmark problem which is used to predict the behavior of

various dynamically varying systems like weather and climate. It is required to predict the

values at time period (t) depending upon the sample values at previous time periods, i.e,

(t− 4), (t− 3), (t− 2) and (t− 1). We collect 1000 such data pairs. The first 500 are used

for training while the others are used for checking the performance of the system.

FLS is trained using first 500 input and output pairs. Therefore the FLS is designed with 4-

inputs and 1-output value. Each input value has four Type-1 Gaussian membership functions.

Following the different possible combinations of the input membership functions the no. of

possible rules becomes 44=256 with each rule comprising 4 antecedent membership functions

from each input, i.e, total of 4×256=1024 membership functions. Further each Gaussian

membership function is defined by 2 parameters, i.e., mean (m) and sigma (σ). Hence we

have to deal with total 2×1024=2048 number of parameters in order to design our FLS.

Generating fuzzy rules is the most important requirement to design a FLS. As we does not

need to use all the possible rules so for the good performance of the system we need to

search the best possible rules from all the possible rules. Searching for the best possible rule

set from such a high dimension search space using conventional optimizations techniques

becomes highly complicated.

GA is an effective optimization tool inspired by the process of evolution in natural systems.

It is a powerful technique to search suitable solutions to various optimization problems. So

instead of using conventional methods GA is one of the most popular Evolutionary Algorithm

for searching optimal solution.

1.3 Objectives

The primary objectives of this research work are summarized as follows:

1. To implement an FLS for 20 randomly generated different rule sets for time-series

forecasting.

2. To implement GA in order to evolve the near optimal fuzzy rule set amongst 20 different

rule sets depending upon fitness evaluation.

3. To implement an FLS using optimal rule set obtained using GA for time-series fore-

casting problem and to compare the performance of an FLS for different number of

rules in the rule base.
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1.4 Methodology

The methodology of this thesis is summarized below:

1. In order to evolve FLS using GA firstly we need to study deeply about FLS and GA.

2. Second requirement is to understand their various key features and strategy parameters

to design an FLS and GA.

3. After brief study about both FLS and GA we need to collect the training as well as

testing data for time series forecasting problem. Finally a program is designed for

evolving FLS using GA to forecast the approximate outputs of the series.

1.5 Thesis Outline

After the brief introduction to M.Tech. thesis given in this chapter, Chapter 2 starts with

the literature survey giving an overview of Genetic Algorithms, its variants and the brief

introduction on how to design an FLS for time-series forecasting and also it presents the use

of evolving FLS using GA.

Chapter 3 is devoted to FLS, literature of FLS including its types and flow diagrams. Chap-

ter 4 is dedicated to study of GA, its literature, algorithms flow and its variants reported till

date.

Chapter 5 is dedicated to detailed study of Mackey-Glass time series and its uses.

Chapter 6 devotes understanding of various design parameters of FLS and GA. Secondly,

implementation flow of Evolutionary FLS using GA for time-series forecasting is discussed.

Chapter 7 represents simulation results of convergence performance of the algorithms. The

best results in tabulated form are also represented in this chapter. Here, forecasted outputs

obtained during simulation results are also represented for better understanding.

Lastly, conclusion and future scopes of this research are discussed in Chapter 8



CHAPTER 2

LITERATURE SURVEY

This chapter presents brief literature survey on designing FLS and various types of GA. It

also covers the investigation study on evolutionary FLS using GA and the application of

Type-2 FLS to the forecasting of Mackey-Glass time series.

2.1 Introduction

Evolutionary computation is that class of Artificial Intelligence (AI) which uses mechanism

inspired by the process of natural evolution like reproduction, crossover, selection etc. Evo-

lutionary Algorithm (EA) technique is used in all those fields in which we need to find the

approximate solution to the problems that cannot be solved easily using other techniques.

Optimization problems are included into this category. In optimization problems candidate

solutions are used as individuals of the populations and the performance of quality of the so-

lution is determined by the fitness function. Population then evolves after iterating through

the above operators. Evolutionary computation is successful in finding the approximate

solution to the problem in the various fields such engineering, medicine, science, robotics etc.

2.2 Genetic Algorithms

Amongst various EA techniques GA is one of the most popular EA technique. It is a search

technique discovered by Holland in 1975 [Holland, 1973] which are based on the process of

the natural evolution such as natural selection in various biological species [De Giovanni and

5
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Pezzella, 2010]. GA we can randomly generate a pool of candidate solutions, i.e, elements

of the function domain and apply the fitness function specified by an application for which

we are evolving the system. Higher the fitness value of the particular solution better is the

solution. Based on this fitness some of the better candidates are chosen to seed the next

generation by applying crossover operation to them. Crossover is the operator applied to

the two or more selected candidates,i.e, parent chromosomes and results one or more new

candidates (the children).

 
Population 

Offspring 

Initialization 

Termination Mutation 

Crossover 

Parents 

Figure 2.1: Block diagram of GA

Mutation is applied to one candidate and result in one new candidate, i.e, offspring. This

process can be iterated until a candidate with sufficient quality is found or a previously set

computational limit is reached. The block diagram depicting GA is shown in Fig 2.1.

2.3 Variants of GA

GA is an efficient Algorithm in solving problems based upon swarm optimization. Over

the last few decades, many different alternatives of GA has been introduced for solving

optimization problem. The comprehensive study of their performance is shown below.

2.3.1 Real Coded Genetic Algorithm (RCGA)

This section presents a theory of convergence for Real Coded Genetic Algorithms (RCGA)

that use floating point or other high-cardinality codings in their chromosomes. The theory

is consistent with the theory of schemata and postulates that selection dominates early GA

performance and restricts subsequent search to intervals with above-average function value

dimension by dimension [Goldberg, 1990]. These intervals may be further subdivided on the

basis of their attraction under genetic hill climbing. Each of these subintervals is called a

virtual character, and the collection of characters along a given dimension is called a virtual

alphabet. It is the virtual alphabet that is searched during the recombinative phase of the

GA, and in many problems this is sufficient to ensure that good solutions are found. Although

the theory helps suggest why many problems have been solved using RCGA, it also suggests
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that real-coded GA’s can be blocked from further progress in those situations when local

optima separate the virtual characters from the global optimum [Goldberg, 1990].

2.3.2 Binary Coded Genetic Algorithm (BCGA)

The Binary Coded Genetic Algorithm (BCGA) is a probabilistic search algorithm that iter-

atively transforms a set (called a population) of mathematical objects (typically fixed-length

binary character strings), each with an associated fitness value, into a new population of

off-spring objects using the Darwinian principle of natural selection and using operations

that are patterned after naturally occurring genetic operations, such as crossover and mu-

tation. Following the model of evolution, they establish a population of individuals, where

each individual corresponds to a point in the search space. An objective function is applied

to each individual to rate their fitness. Using well conceived operators, a next generation is

formed based upon the survival of the fittest. Therefore, the evolution of individuals from

generation to generation tends to result in fitter in individuals, solutions, in the search space

[Bridges and Goldberg, 1987].

2.3.3 Cellular Genetic Algorithm (CGA)

Cellular Genetic Algorithms (CGAs) are a kind of EA’s. CGA’s are robust search algorithms

inspired by the analogy of natural evolution from the point of view of the individual solu-

tion. They have demonstrated to be particularly effective optimization techniques solving

many practical problems in science and engineering. The basic algorithm (CGA) shows high

performance and because of its swarm intelligence structure (i.e., emergent behavior and

decentralized control flow). CGA is able of keeping a high diversity in the population until

reaching the region containing the global optimum [Alba and Dorronsoro, 2009].

2.3.4 Mixed Integer Non-Linear Programming (MINLP)

Mixed Integer Non-Linear Programming (MINLP) problems are the most generalized form

of single-objective global optimization problems. They contain both continuous and integer

decision variables, and involve non-linear objective function and constraints setting no limit to

the complexity of the problems. MINLPs deals with three major parameters. 1) They involve

both discrete (integer) and continuous (floating point) variables. 2) Objective function and

constraints are non-linear, generating potential non-convexities. 3) They can involve active

equality and inequality constraints. Many real world constrained optimization problems

are modeled as MINLPs e.g. heat and mass exchange networks, batch plant design and

scheduling, design of interplanetary spacecraft trajectories etc [Costa and Oliveira, 2001].
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2.4 Fuzzy Logic Systems

FLS system is a non-linear mapping of an input data into output data [Mendel and Mouzouris,

1997]. It has the ability to handle problems with imprecise and incomplete data also it can

handle numerical as well as linguistic knowledge simultaneously. Unlike standard traditional

logic that deals with only 0 and 1 FLS deals with degree of truthfulness nd falsefulness of a

particular element. Fuzzy Inference System (FIS) consists of a number of conditional if-then

statements called rules, e.g., if “weather is cold” then “heat is on” We can supply as many

rules as necessary to describe a system. FLS rely on membership functions to carry out

computations. Therefore in order to deal with uncertainty we deal with Type-1 FLS but

there are some cases where things mean different to different people and in those cases we

have to deal with uncertainty over uncertainty, e.g., if few people says that a person with

height above 5 feet is considered as tall and others say that a person above 6 is considered

as tall. So there are mixed views about the height of a person. Therefore their is an un-

certainty in the boundaries of the membership function for tall. So, blurred boundaries of a

membership function depict a Type-2 Fuzzy set. In all those cases where their is ambiguity

over the boundaries or location of fuzzy sets are known as Type-2 FLS. Unclear boundaries

refers to a noise in the fuzzified inputs. So, in 1999 Karnik and Mendel [Karnik and Mendel,

1999] presented an approach to forecast time-series by incorporating information about noise

strength into Type-2 FLS.

2.4.1 Application of Type-2 FLS for Time-Series Forecasting

In 1999 Karnik and Mendel [Karnik and Mendel, 1999] trained type-1 FLS with noisy data,

and demonstrated how the uncertainty introduced in the FLS due to this noise can be

modeled using type-2 fuzzy sets. They showed that an interval type-2 FLS can be used to

obtain bounds on the output, as well as a better crisp prediction, by tuning its parameters.

The former serves as a sort of confidence interval and cannot be obtained using a type-1 FLS,

regardless of how many rules one uses in that system. Firstly Type-1 FLS was designed and

then type-2 FLS was created from it by using information available about the noise in the

training data. Performance of the system was evaluated using Mean Square Error (MSE)

obtained between the crisp outputs obtained and the desired outputs of the time-series.

Minimum value of MSE obtained from this system was 0.0134 for 0db Signal to Noise Ratio

(SNR) using this system. There can, however, be other design approaches. For example,

they could start with a type-2 system, and tune its parameters directly using the training

data which becomes the future work of this paper.
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2.4.2 Designing Fuzzy Logic Systems

In 1997 J.M. Mendel and George C. Mouzouris [Mendel and Mouzouris, 1997] presented

a formulation of FLS that can be used to construct non-parametric models of non-linear

processes, given only input-output data. The system can learn non-linear mapping by being

presented a sequence of input signal and desired response pairs, which are used in conjunction

with some optimization algorithm to determine the values of the system parameters. Given

a set of input-output pairs, the task of learning is essentially equivalent to determining a

system that provides an optimal fit to input-output pairs with respect to the cost function or

fitness function. The fitness function used in this case was MSE. In this work several design

methods with different properties and features were discussed and their performances were

compared using an example on the predictive modeling of a non-linear chaotic system.

2.5 Evolutionary FLS using GA

Fuzzy Systems are being used successfully in an increasing number of application area. They

use linguistic rules to decide the system. One of the most important requirement in designing

any fuzzy system is the generation of the fuzzy rules. Evolutionary fuzzy systems are those

systems in which fuzzy rule sets including the number of rules inside a rule set are evolved

using EA [Shi et al., 1999].

2.5.1 Implementation of Evolutionary Fuzzy Systems

In 1999 Yuhui Shi and Russel Eberhart [Shi et al., 1999] implemented an evolutionary fuzzy

system in which the fuzzy rule sets including the number of fuzzy rules inside a rule set

are evolved using GA. The method described appeared to be useful for a wide range of

classification and diagnostic problems.

2.5.2 Fuzzy logic synthesis with GA

Thrift considers the application of a genetic-based learning algorithm to systems based on

Fuzzy Logic. In this paper, Fuzzy Logic controller has been designed. Discrete nature of

fuzzy strategies make them prime candidate for discovery by genetic algorithms. GA is

employed here to create fuzzy rules. The application using FLS here was found to experience

acceleration so the usefulness of GA approach as the system becomes more complex could

become more apparent [Thrift, 1991].
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2.5.3 Design of intelligent fuzzy logic controllers using GA

Hwang and Thompson presents a methodology for combining genetic algorithms and fuzzy

algorithms for learning the optimal rules for a FLS. With the aid of genetic algorithms,

optimal rules of fuzzy logic controllers can be designed without human operators’ experience

and/or control engineers knowledge [Hwang and Thompson, 1994]. The approach presented

here maintains the shape of membership functions and searches the optimal control rules

based on a fitness value which is defined in terms of a performance criterion. Applications

of the method to a Fuzzy Logic Controller using Genetic Algorithm (FLS-GA) and a model

reference adaptive fuzzy-GA controller (MRAFC) are presented to illustrate the effectiveness

of the design procedure [Hwang and Thompson, 1994].

2.6 Conclusion

In this chapter, we present the different methodologies to design FLS based applications.

Also we present the application of Type-2 FLS for time-series forecasting problem which is

a benchmark problem. It was found that the evolution of an FLS using GA proves to be a

very effective in order to find out the best optimal solution to the problem. The application

using FLS was found to experience acceleration when evolved using GA so the usefulness of

GA approach increases as the system becomes more complex. Therefore, in this work we

have implemented the concept of evolving Type-1 FLS using GA for time-series forecasting

problem. We will discuss briefly about FLS and its types in the next chapter.



CHAPTER 3

FUZZY LOGIC SYSTEMS

FLS is required to map input space to output space using FL. When we talk about uncertainty

we usually deal with FL. So, FL is a kind of knowledge which helps us to deal with uncertainty.

Traditional logic which deals with either true or false statements. But in the real world

problems not every decision is either true or false. So, in order to deal with the real world

problems we deal with FL.

3.1 Introduction

FLS introduced by Lotfi. A. Zadeh [Mendel, 1995], [Zadeh, 1974] in order to provide us with

a provision to deal with uncertainty or the knowledge which do not have well defined sharp

boundaries. In FLS, fuzzy sets are characterized by membership functions mapped between

[0,1]. FL provides us with membership functions or we can say truthfulness or falsehoods, i.e,

up to what degree a particular value is true or false for a particular fuzzy set. Most words and

evaluations we use in our daily reasoning are not clearly defined in a mathematical manner.

So we require FL to deal with the real world problems. Fig. 3.1 clearly differentiate between

the traditional logic and FL.

As shown in Fig. 3.2 according to traditional logic a person with height 5 feet and above is

considered as tall. There is an abrupt change in the degree of membership, i.e, it is either 0

or 1. There is no value lying between 0 and 1 but unlike traditional logic as shown in case

of FL the membership degree for short height and long height changes gradually depending

upon the value of the height. So, there lies certain degree of uncertainty in case of FL. The

curve of membership function defines the degree of truth for each element in the input space.

11
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Figure 3.1: Traditional Logic
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Figure 3.2: Fuzzy Logic Membership function representation

Most of the FLS are developed based on two different approaches, firstly model-based ap-

proach in which objective information is represented by mathematical models and subjective

information represented by linguistic statements that then are converted into rules. Sec-

ondly, model-free approach in which rules are expected from numerical data and are then

combined using linguistic information collected from experts. Designing an FLS is itself an

NP hard problem. The linguistic knowledge collected from experts is represented in the form

of fuzzy rules. The rules are constructed using the collection of fuzzy IF-THEN statements

depending upon the possible combinations of input and output variables. For example “if

process is too hot and process is heating rapidly” “then the command is cool the process

quickly”. Here the if part of the fuzzy rules represents an antecedent and then part represents

the consequent. Both antecedent and consequent are represented using fuzzy sets defined

by membership functions. Different types of membership functions are Gaussian, triangular,

trapezoidal, piecewise linear and singleton where the choice of membership function depend

upon the type of application we are using. Once rules have been established an FLS can be

viewed as mapping from inputs to the output and this can be expressed quantitatively as

y = f(x) where f is highly non-linear and high order differential mapping of multiple crisp

inputs with that of single (multiple) crisp outputs(s).
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3.1.1 Type-1 FLS

The basic architecture of type one FLS is shown in Fig. 3.3:

 

Defuzzification  Fuzzification 

Inference

e 
Fuzzy input sets Fuzzy output sets 

Crisp 

inputs 
Crisp 

outputs 
Rulebase 

Figure 3.3: Block diagram of Type-1 FLS

The different steps involved in designing of an FLS are explained below:

1. Fuzzification: Fuzzification is the process of fuzzifying the inputs that means various

input values are provided with their particular degree of membership in the correspond-

ing membership function of their fuzzy sets.

2. Rulebase: The complete set of rules of a single FLS is called as Rulebase.

3. Inference Engine: In the process of Inference truth value for each rule is computed

and applied to the consequent part of each rule. If the antecedent partially true in

accordance to the input provided then the output fuzzy set is truncated using impli-

cation operator. The inputs to the aggregation process are list of truncated output

functions returned by the implication process for each rule. All the truncated fuzzy

sets assigned to each output variables are combined together to form a single fuzzy set

using aggregation operator.

4. Defuzzification: After performing inference on the set of if-then rules the resulting

fuzzified output set is used to obtain single crisp output using defuzzification. Various

defuzzification techniques are used like height defuzzification, center of gravity, etc.

Therefore, Type-1 FLS does not have the ability to handle uncertainty over uncertainty. In

order to deal with such kind of uncertainty another type of FLS known as Type-2 FLS are

used.

3.1.2 Type-2 FLS

Fuzzy sets models words that are being used in rulebase and inference engine. However, word

mean different thing to different people and, therefore, are uncertain. Membership degree

of a Type-1 fuzzy set cannot capture uncertainties about the words. Hence, another type

of fuzzy set, i.e., Type-2 fuzzy sets came into existence which is capable of handling such
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uncertainties. For such a fuzzy set membership value corresponding to some crisp input is

not a crisp value rather a Type-1 fuzzy set called secondary membership [Karnik and Mendel,

2001b], [Singh and Kakkar, 2014], [Castillo and Melin, 2008]. This concept can be extended

to Type-n fuzzy sets. Computations based on Type-2 fuzzy sets are very intensive, however,

when secondary membership is assumed unity the computational burden reduces drastically.

This is another variant to fuzzy set representation and is known as Interval Type 2 fuzzy

sets [Singh and Kakkar, 2014], [Singh and Kakkar, 2014], [Castillo and Melin, 2008].
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Rulebase 

Inference 

Defuzzification 

Type-reducer 

Fuzzy input sets Fuzzy output sets 

Crisp 

Inputs 

Crisp 

Outputs 

Type-1 

Fuzzy sets 

Output Processing 

Figure 3.4: Block diagram of Type-2 FLS

T2 FLS are an extension of T1 FLS in which uncertainty is represented by an additional

dimension. This ancillary third dimension in T2 FLS gives more degrees of freedom for better

representation of uncertainty compared to T1 fuzzy sets. T2 FSs are useful in circumstances

where it is difficult to determine the exact membership function for a FS. Using T2 FLS

provides the capability of handling a higher level of uncertainty and provides a number of

missing components that have held back successful deployment of fuzzy systems in human

decision making. A T2 FLS includes fuzzifier, rule base, fuzzy inference engine, and output

processor as shown in Fig. The output processor includes type-reducer and defuzzifier which

generates a T1 FS output (from the type-reducer) or a crisp number (from the defuzzifier).

A T2 FLS is characterized using T2 FSs for antecedents and/or consequents and IF-THEN

rules. Block diagram of Type-2 FLS is shown in Fig.3.4. It can be explained as below:

1. Fuzzification: As shown in figure crisp inputs are first transformed into fuzzy sets in

the fuzzifier block because it is fuzzy sets and not numbers that activate the rules.

Fuzzy sets obtained in this case are Type-2 Fuzzy sets that are three-dimensional.

2. Inference Engine: After measurements are fuzzified, the resulting input fuzzy sets are

mapped into fuzzy output sets by the Inference block. This is accomplished by first

quantifying each rule using fuzzy set theory, and by then using the mathematics of fuzzy

sets to establish the output of each rule, with the help of an inference mechanism. If

there are M rules then the fuzzy input sets to the Inference block will activate only a

subset of those rules, where the subset contains at least one rule and usually way fewer
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than M rules. Inference is done one rule at a time. So, at the output of the Inference

block, there will be one or more fired-rule fuzzy output sets.

3. Outout Processing : The fired-rule output fuzzy sets have to be converted into a num-

ber, and this is done in the Fig. 3.4 Output Processing block. Output processing

block consist of two parts, i.e, Type-reduction part where type-2 fuzzy set is reduced

to type-1 fuzzy set. There are as many type-reduction methods as there are type-1

defuzzification methods. An algorithm developed by Karnik and Mendel [Karnik and

Mendel, 2001a], [Liang and Mendel, 2000] now known as the KM Algorithm is used for

type-reduction. Although this algorithm is iterative, it is very fast. The second step of

Output Processing, which occurs after type-reduction, is called defuzzification which

is used to obtain crisp output from the fuzzified output.

3.1.3 Interval Type-2 FLS

Generalized T2 FLSs are computationally more intensive as compared to T1 FLS as former

includes Fuzzy sets those are 3-dimensional in nature. Things do simplify when secondary

membership functions are considered as interval sets, i.e., the secondary membership values

are either 0 or 1 and set are referred as IT2 FSs or simply IT2 FSs. IT2 FSs have received

the most investigational interests as they involve mathematics that is simpler than that of

generalized T2 FSs. Therefore, literature available about IT2 FSs is more as compared to that

of generalized T2 FSs. Now a days, both kinds of fuzzy sets are being actively investigated by

an ever-growing number of researchers around the world. IT2 FSs have widely been accepted

as they provide more freedom degree in modeling higher orders of uncertainty than T1 FSs.

This property has been the driving force behind more of the advancements in theories and

applications of IT2 FSs and FLSs.
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Figure 3.5: Block diagram of Type-2 FLS
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IT2 FSs are represented by upper and lower bounds of uncertainty called Upper Membership

Function (UMF) and Lower Membership Function (LMF) as shown in Fig. 3.5. The region

between upper and lower bounds of Uncertainty is termed as Footprint of uncertainty (FOU).

3.2 Conclusion

Fuzzy Logic was conceived as a better method for sorting and handling data but has proven

to be a excellent choice for many control system applications since it mimics human control

logic. It can be built into anything from small, hand-held products to large computerized

process control systems. It uses an imprecise but very descriptive language to deal with

input data more like a human operator. It is very robust and forgiving of operator and data

input and often works when first implemented with little or no tuning. After giving the brief

explanation regarding FLS the next chapter deals with the GA.



CHAPTER 4

GENETIC ALGORITHMS

This chapter introduces GA and there use for optimization. In the field of artificial intelli-

gence, GA is a search heuristic that mimics the process of natural selection. This heuristic

(also sometimes called a meta-heuristic) is routinely used to generate useful solutions to op-

timization and search problems [Lin and Mitchell, 2005]. GA belong to the larger class of

EA, which generate solutions to optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and crossover.

4.1 Introduction

GA were formally introduced in the United States in the 1970s by John Holland at University

of Michigan [Holland, 1973]. The continuing performance improvements of computational

systems has made them attractive for many types of optimization. In particular, GA work

very well on mixed (continuous and discrete), combinatorial problems. They are less suscep-

tible to getting stuck at local optima than gradient search methods, however, they tend to

be computationally intensive. Fig. 4.1. shows the detailed flow diagram of GA.

GAs encode the decision variables of a search problem into finite-length strings of alphabets

of certain cardinality. The strings which are candidate solutions to the search problem are

referred to as chromosomes, the alphabets are referred to as genes and the values of genes

are called alleles. For example, in a problem such as the traveling salesman problem, a

chromosome represents a route, and a gene may represent a city. In contrast to traditional

17
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Figure 4.1: Flow diagram of Genetic Algorithms

optimization techniques, GAs work with coding of parameters, rather than the parameters

themselves. To evolve good solutions and to implement natural selection, we need a measure

for distinguishing good solutions from bad solutions. The measure could be an objective

function that is a mathematical model or a computer simulation, or it can be a subjective

function where humans choose better solutions over worse ones. In essence, the fitness

measure must determine a candidate solutions relative fitness, which will subsequently be

used by the GA to guide the evolution of good solutions. Another important concept of GAs

is the notion of population. Unlike traditional search methods, genetic algorithms rely on

a population of candidate solutions. The population size, which is usually a user-specified

parameter, is one of the important factors affecting the scalability and performance of genetic

algorithms. For example, small population sizes might lead to premature convergence and

yield substandard solutions. On the other hand, large population sizes lead to unnecessary

expenditure of valuable computational time. Once the problem is encoded in a chromosomal

manner and a fitness measure for discriminating good solutions from bad ones has been

chosen, we can start to evolve solutions to the search problem using the following steps:
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4.1.1 Initialization of Population

GA starts with initialization of randomly generated population consisting of vectors of chro-

mosomes [Shi et al., 1999]. The initial population of candidate solutions is usually generated

randomly across the search space. It is commonly done by seeding the population with

random values. However, domain-specific knowledge or other information can be easily in-

corporated.

The population size depends on the nature of the problem, however, typically contains sev-

eral hundreds or thousands of possible solutions. Often, the initial population is generated

randomly, allowing the entire range of possible solutions (the search space). Occasionally,

the solutions may be “seeded” in areas where optimal solutions are likely to be found.

4.1.2 Fitness Function

Fitness of each chromosome is calculated using a fitness function which is problem specific.

Fitness function is a particular type of objective function that is used to find the figure of

merit, i.e, how close a given design solution is to achieving a set of aims. The calculation of

fitness values is conceptually simple. It can, however, be quite complex to implement in a

way that optimize the efficiency of GAs search of the problem space. It is the fitness that

guides the search of the problem space.

Fitness value is proportional to the performance measurement of the function being opti-

mized. In each generation, the priority of the genetic strings is ranked according to the

fitness values calculated based on a fitness function. Higher the fitness of the chromosome,

better is its performance. Through either maximizing or minimizing the fitness values gen-

eration by generation, the genetic string with global optimum could be found.

4.1.3 GA Operators

Various GA operators like selection, crossover, mutation operators are discussed in brief in

the following subsections:

4.1.3.1 Selection of Parent Pool

Selection is the stage of a GA in which individual genomes are chosen from a population

for later breeding. A new population is formed by selecting from members of the current
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population using stochastic process that is weighted by each their fitness value. The higher

the fitness, the more likely it is that the chromosome will be selected for the new generation.

Various selection techniques used in GAs are discussed as below:

1. Tournament Selection

Tournament Selection (TS) is probably the most popular selection method in GA [Gold-

berg and Deb, 1991]. In TS n individuals are selected randomly from the large popula-

tion, and the selected individuals compete against each other. The individual with the

highest fitness wins and will be included as one of the next generation of population.

The no of individuals competing in each tournament is referred to as tournament size,

commonly set to 2. This technique also gives us a chance to all individuals to be se-

lected and thus is preserves diversity [Goldberg and Deb, 1991], [Noraini and Geraghty,

2011]. The mechanism of TS is shown in Fig. 4.2.
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Figure 4.2: Tournament Selection

In the above figure, f(1), f(2)......., f(9) are the individuals from which selection has

to be made, the tournament size (Ts) is set to 3, which means 3 chromosomes are

competing each other for being selected as one of the individual of the next generation.

Only the best chromosomes among them is selected to reproduce.

2. Roulette Wheel Selection

This selection method is called the fitness proportionate selection and it is the most

commonly used selection technique. In this method individuals are selected with a

probability that is directly proportional to their fitness value, i.e, an individual selection

corresponds to a portion of a roulette wheel. The probability of selecting a parent

can be seen as spinning a roulette wheel with a size of the segment for each parent

being proportional to its fitness. Those with a largest fitness have more probability of

being chosen [Noraini and Geraghty, 2011]. The fittest individual occupies the largest

segment, where as the least fit have smaller segment. When the wheel is spun the wheel

will finally stop and the pointer attached to it will point on one of the segment, most
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Figure 4.3: Roulette-Wheel Selection

probably on one of the widest one. Each time the wheel is spun the better individuals

will be chosen more often then the poorer ones, thus fulfilling the requirement of survival

of fittest. The roulette wheel selection mechanism is depicted in Fig. 4.3.

The selection probability (Pi) for individual is defined as:

Pi =
fi∑n
i=1 fi

(4.1)

where f1, f2, f3,.............fn are the fitness values of the individuals 1,2,3...........n.

3. Rank Selection

Rank-based roulette wheel selection is the selection strategy where the probability of a

chromosome being selected is based on its fitness rank relative to the entire population.

Rank-based selection schemes first sort individuals in the population according to their

fitness and then computes selection probability according to their ranks rather then

fitness values. Hence rank based selection can maintain a constant pressure in the

evolutionary search where it introduces a uniform scaling across the population and

is not influenced by super individuals or the spreading of fitness values at all as in

roulette wheel selection. The performance of the selection scheme depends greatly on

the mapping function [Whitley et al., 1989], [Noraini and Geraghty, 2011].

4.1.3.2 Crossover

Crossover is a process of taking more than one parent solutions producing a child solution

from them. This operator is used to merge the genetic information of two individuals, i.e,

using this operator we are able to exchange the genetic information between the two parent

chromosomes randomly chosen in order to produce better offspring [Gwiazda, 2006], [Spears

et al., 1992].
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Various crossover techniques are discussed below:

1. One-point Crossover

In case of one point crossover a single crossover point on both the parent chromosome

string is selected. All the data beyond that point in either of the parent strings is

swapped between two parent chromosomes. The resulting chromosomes are the chil-

dren. One-point crossover is shown in Fig. 4.4:
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Figure 4.4: one-point crossover

2. Two-point crossover

Two-point crossover calls for 2-points to be selected on the parent chromosome strings.

Everything between the two points is swapped between the parent organisms, rendering

two children chromosomes. Two-point crossover is shown in Fig. 4.5:
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Figure 4.5: Two-point crossover

3. Uniform Crossover

Uniform Crossover uses a fixed mixing ratio between two parents. Unlike one- and two-

point crossover, the uniform crossover enables the parent chromosomes to contribute

the gene level rather then the segment level. If the mixing ratio is 0.5, the offspring

has approximately half of the genes from first parent and the other half from second

parent. Uniform crossover is shown in Fig. 4.6:
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Figure 4.6: Uniform crossover
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4.1.3.3 Mutation

Mutation is a genetic operator used to maintain genetic diversity from one generation of a

population of GA chromosomes to the next. It is analogous to biological mutation. Mutation

alters one or more gene values in a chromosome from its initial state. In mutation, the solution

may change entirely from the previous solution. Hence GA can come to better solution by

using mutation. Mutation occurs during evolution according to a user definable mutation

probability. This probability should be set low. If it is set too high, the search will turn into

a primitive random search.

The classic example of a mutation operator involves a probability that an arbitrary bit in a

genetic sequence will be changed from its original state. A common method of implementing

the mutation operator involves generating a random variable for each bit in a sequence.

This random variable tells whether or not a particular bit will be modified. This mutation

procedure, based on the biological point mutation, is called single point mutation. Other

types are inversion and floating point mutation. When the gene encoding is restrictive as in

permutation problems, mutations are swaps, inversions, and scrambles [Spears et al., 1992].

The purpose of mutation in GAs is preserving and introducing diversity. Mutation should

allow the algorithm to avoid local minima by preventing the population of chromosomes from

becoming too similar to each other, thus slowing or even stopping evolution. This reasoning

also explains the fact that most GA systems avoid only taking the fittest of the population

in generating the next but rather a random selection with a weighting toward those that are

fitter [Spears et al., 1992].

4.1.3.4 Elite

When creating new population by crossover and mutation, we have a big chance, that we

will loose the best chromosome. Retaining the best individuals in a generation unchanged

in the next generation, is called elitism or elitist selection. It is a successful variant of the

general process of constructing a new population.

4.2 Conclusion

GAs are used for a number of different application areas. An example of this would be

multidimensional optimization problems in which the character string of the chromosome

can be used to encode the values for the different parameters being optimized.
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In practice, therefore, we can implement this genetic model of computation by having arrays

of bits or characters to represent the chromosomes. Simple bit manipulation operations allow

the implementation of crossover, mutation and other operations. Although a substantial

amount of research has been performed on variable length strings and other structures, the

majority of work with GA is focussed on fixed-length character strings. We should focus on

both this aspect of fixed-length and the need to encode the representation of the solution

being sought as a character string, since these are crucial aspects that distinguish genetic

programming, which does not have a fixed length representation and there is typically no

encoding of the problem. After briefly discussing about the FLS and GA the next chapter is

about the application for which we are using FLS and GA. The next chapter gives the brief

introduction about the time-series forecasting problem.



CHAPTER 5

MACKEY-GLASS TIME SERIES

The emphasis in this chapter is on time series analysis and forecasting. This chapter deals

with the use of data to forecast future events.

5.1 Time-Series Forecasting

A time series is a sequence of data points, typically consisting of successive measurements

made over a time interval. Examples of time series are ocean tides, counts of sunspots

etc. Time series are used in statistics, signal processing, pattern recognition, econometrics,

mathematical finance, weather forecasting, intelligent transport and trajectory forecasting,

earthquake prediction, electroencephalography, control engineering, astronomy, communica-

tions engineering, and largely in any domain of applied science and engineering which involves

temporal measurements [Hamilton, 1994]. Time series forecasting is the use of a model to

predict future values based on previously observed values. Time series data have a natural

temporal ordering. This makes time series analysis distinct from cross-sectional studies, in

which there is no natural ordering of the observations (e.g., explaining people’s wages by

reference to their respective education levels, where the individuals data could be entered in

any order) [Lin et al., 2003].

Time series analysis is also distinct from spatial data analysis where the observations typically

relate to geographical locations (e.g. accounting for house prices by the location as well as

the intrinsic characteristics of the houses). A stochastic model for a time series will generally

reflect the fact that observations close together in time will be more closely related than

observations further apart. In addition, time series models will often make use of the natural
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one-way ordering of time so that values for a given period will be expressed as deriving in

some way from past values, rather than from future values (see time reversibility). A time

series is a collection of data recorded over a period of time-weekly, monthly, quarterly, or

yearly. An analysis of history-a time series-can be used by management to make current

decisions and plans based on long-term forecasting. We usually assume past patterns will

continue into the future. Long-term forecasts extend more than 1 year into the future; 5-,

10-, 15-, and 20-year projections are common [Lin et al., 2003], [Hamilton, 1994].

5.2 Mackey Glass Time-Series (MGTS)

Chaos theory is the field of study in mathematics that studies the behavior of dynamical

systems that are highly sensitive to initial conditionsa response popularly referred to as the

butterfly effect. Small differences in initial conditions (such as those due to rounding errors

in numerical computation) yield widely diverging outcomes for such dynamical systems,

rendering long-term prediction impossible in general [Kellert, 1994]. This happens even

though these systems are deterministic, meaning that their future behavior is fully determined

by their initial conditions, with no random elements involved [Kellert, 1994]. In other words,

the deterministic nature of these systems does not make them predictable [Kellert, 1994],

[Werndl, 2009]. This behavior is known as deterministic chaos, or simply chaos. The theory

was summarized by Edward Lorenz as: [Danforth, 2013] Chaos: When the present determines

the future, but the approximate present does not approximately determine the future.

Chaotic behavior exists in many natural systems, such as weather and climate [Casdagli,

1989], [Lorenz, 1963], [Ivancevic and Ivancevic, 2008]. This behavior can be studied through

analysis of a chaotic mathematical model, or through analytical techniques such as recurrence

plots and Poincar maps. Chaos theory has applications in several disciplines, including

meteorology, sociology, physics, engineering, economics, biology, and philosophy.

Chaos theory concerns deterministic systems whose behavior can in principle be predicted.

Chaotic systems are predictable for a while and then appear to become random. The amount

of time for which the behavior of a chaotic system can be effectively predicted depends on

three things: 1) How much uncertainty we are willing to tolerate in the forecast. 2) How

accurately we are able to measure its current state. 3) A time scale depending on the

dynamics of the system. Chaos is based on the principle that simple deterministic laws

can exhibit complex external behavior; although it is quite difficult to reveal such simple

laws from the system’s external behavior only. This is mainly due to the dissipation and

sensitivity to initial conditions properties and structure parameters of the chaotic systems

[Wei, 2002]. However, most time series of practical relevance are of nonlinear and chaotic
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nature which makes conventional, linear prediction methods inapplicable. Hence, a number

of nonlinear prediction methods have been developed [Mayer et al., 1999].

We suppose that know the time series be MGTS and want to reach accurate prediction

from time series system. At first, equations and properties of MGTS is investigated. Then

the unknown parameters of time series structure by GA have been estimated. MGTS also

known as Chaotic series is basically a benchmark problem required for time series forecasting

in order to study the behavior of various dynamic systems like (weather and climate). So,

MGTS is required to study the future behavior of the system depending upon the present

behavior of the system i.e. present determine the future. MGTS can be represented by the

figure. MGTS is generated using delay differential equation (5.1)

dx(t)

dt
=

0.2x
(
t− τ

)
1 + x10

(
t− τ

) − 0.1x
(
t
)

(5.1)

The application is used to predict the values at time (t) depending upon the values at previous

time periods (t− 1), (t− 2), (t− 3), (t− 4). The graph of MGTS is shown in Fig. 5.1.
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Figure 5.1: Graphical representation of Mackey Glass time series

Firstly, the system is trained using first 500 inputs obtained from time-series data and then

the system is tested for next 500 inputs. The chaotic nature of MGTS makes its prediction

uncertain because of the noise in the inputs available from the time-series data. In 1999

Karnik et.al. and Mendel et.al. [Karnik and Mendel, 1999] presented approach to forecast

time series by incorporating information about noise strength into Type-2 FLS. Using Type-

2 FLS the bounds on the outputs was obtained within which true output is likely to lie.

Artificial Neural Networks (ANN) and Polynomials are two methods for global modeling.

But they both cannot give simple and elegant model representations. They are less powerful

in revealing the system dynamic laws and are difficult to be integrated with the pre-discovered

knowledge on chaotic systems. But some other methods such as genetic algorithm, Dynamic

Programming, and Swarm Optimization are also used. These methods are based on some

prior knowledge of chaotic systems.
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The FLS is designed with four antecedent and one consequent, where each antecedent has

four Gaussian shaped fuzzy sets. Further each Gaussian membership function is defined by

2 parameters, i.e., mean (m) and sigma (σ). Hence we have to deal with total 2×4×1024 =

2048 number of parameters in order to design our FLS. Generating fuzzy rules is the most

important requirement to design a FLS. As we does not need to use all the possible rules so

for the good performance of the system we need to search the best possible rules from all

the possible rules. Searching for the best possible rule set from such a high dimension search

space using conventional optimizations techniques becomes highly complicated. GA is an

effective optimization tool inspired by the process of evolution in natural systems. It is a

powerful technique to search suitable solutions to various optimization problems. So instead

of using conventional methods GA is one of the most popular Evolutionary Algorithm for

searching optimal solution. The work presented in this thesis is about the methodology to

evolve optimal design of FLS where fuzzy sets are designed using fuzzy c-mean clustering

algorithm and fuzzy sets are evolved by GA for MGTS forecasting.

5.3 Conclusion

In this thesis, Fuzzy System has been developed for forecasting the given time series. GA is

suitable for evolving a fuzzy system with known structure. Various possible future outputs

can be predicted with the help of the designed fuzzy system. Next chapter discuses the

methodology for implementing the designed process.
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IMPLEMENTATION

This chapter presents method of evolve FLS and GA to solve the problem of forecasting

the Mackey-Glass chaotic time series. In this chapter the detailed methodology to evolve

FL rules automatically using GA has been discussed also the methodology employed for the

minimization of the fitness function, i.e., MSE has been discussed and at last the best rulebase

corresponding to the least MSE has been fixed into the designed FLS in order to get the output

closer to the desired output.

6.1 Introduction

6.1.1 Genetic Algorithm (GA)

GA developed by John Holland in 1970 [Holland, 1973] is a global search algorithm inspired by

natural mechanism of genetical improvement in biological species [De Giovanni and Pezzella,

2010], described by Darwinian Theory of Survival of Fittest [Sinha and Singh, 2014]. GA

is widely used as an optimization tools in various fields such as medical, engineering and

finance [Kumar et al., 2012] and can also be used for the purpose of automatic evolution using

crossover, mutation and survival of the fittest [Sinha and Singh, 2014]. GA is widely used

as an optimization tools in various fields such as medical, engineering and finance and can

also be used for the purpose of automatic evolution using crossover, mutation and survival

of the fittest [Kumar et al., 2012]. GA starts with initialization of randomly generated

population consisting of vectors of chromosomes [Shi et al., 1999]. After that the fitness for

each chromosome in the population is calculated using some standard fitness function. A

29
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new population is generated by applying crossover and mutation over selected chromosomes.

Selection is most commonly performed using a “Roulette wheel” mechanism. The next step

crossover involves the interchanging of some values of 2 parent chromosomes depending upon

the crossover probability [Shi et al., 1999], [Bastian and Hayashi, 1995]. Finally mutation is

performed which stands for changing the values of the elements of the population randomly

using mutation probability. The all new population is generated now which is copied back

to the initial population in order to calculate the new fitness values. The new population

will yield the improved values of fitness. The whole algorithm repeats until some required

condition is not met.

6.1.2 Fuzzy Logic System (FLS)

FLS introduced by Lotfi. A. Zadeh [Mendel, 1995], [Zadeh, 1974] was discovered in order

to provide us with a provision to deal with uncertainty or the knowledge which do not have

well defined sharp boundaries. In FLS, fuzzy sets are characterized by membership functions

mapped between [0,1] [Dubois, 1980]. For example temperature can be represented in the

form of different fuzzy sets depending upon its range such as too cold, cold, warm, hot, too hot

[Singh and Kakkar, 2014]. Different types of membership functions are Gaussian, triangular,

trapezoidal, piecewise linear and singleton where the choice of membership function depend

upon the type of application we are using. Every Fuzzy Logic System use a set of If-then

rules called Rulebase where if part contain a condition and then part contain a conclusion.

For example if the temperature is hot then the command is cool. Inference is performed by

evaluating and combining various fuzzy rules using fuzzy set operations in order to get the

output fuzzy set from which a single crisp output is obtained using defuzzification.

6.2 Implementation

GA have demonstrated to be a robust and very powerful tool to perform tasks such as the

generation of fuzzy rule base, optimization of fuzzy rule bases Cordón et al. [2001]. All these

tasks can be considered as optimization or search processes within large solution spaces

Bastian and Hayashi [1995], [Yuan and Zhuang, 1996]. The implementation involves the

methodology to evolve optimal design of FLS where fuzzy sets are designed using fuzzy c-

mean clustering algorithm and fuzzy sets are evolved by GA. The task of evolution involves

random generation of fuzzy rule base as well as optimization of fuzzy rule base from a large

search space. The detailed flowchart is shown in Fig.6.1. that depicts the evolutionary

process flow of an FLS using GA.
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Figure 6.1: GA based design flow of FLS’s

1. Initialization of Population

In the approach of evolving rules using GA, the 20 different rulebases with each rulebase

containing 10 rules are randomly generated keeping in mind the range of antecedents

and consequents of the rulebase of the FLS system to be designed for time-series fore-

casting. The randomly generated rulebases are then copied into the GA population

with each rulebase representing each chromosome of the population. So, in the start of

the algorithm each chromosome of GA population is encoded with the rule set of FLS

[Shi et al., 1999]. At this step we cannot decide the number of rules to be included

in the rulebase so we have just assumed the number of rules to be included in each

rulebase.

2. Fitness Function

The fitness function here is evaluated using a type-1 FLS designed using four input and

one output variables for time-series prediction. Here, fuzzy sets are designed using fuzzy

c-mean clustering algorithm and fuzzy sets are evolved by GA. The FCM algorithm

attempts to partition a finite collection of n elements X = x1, x2, x3,...........,xn into a

collection of c fuzzy clusters with respect to some given criterion. Given a finite set
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of data, the algorithm returns a list of c cluster centers C==c1, c2, c3,...........,cn and

a partition matrix W = wi,j ∈[0, 1], i = 1, . . . , n, j = 1, . . . , c, where each

element wij tells the degree to which element xi belongs to cluster cj . Each input

variable is fuzzified using four gaussian membership functions characterized by two

parameters, i.e., mean (m) and standard deviation (σ). Gaussian membership function

is represented by (6.1).

µ
(
x
)

= exp
(−(x−m)2

2σ2
)

(6.1)

where x stands for the input values. The rule sets randomly generated and encoded as

GA population are fired using inputs available from the training data. Min and max

operatotrs are employed for implication and aggregation. Defuzzification is performed

with the Height Defuzzification method. Output of Height Defuzzification is given by

(6.2).

y =

∑M
i=1Ciµ

(
xi
)∑M

i=1 µ
(
xi
) (6.2)

where M stands for number of rules, C represents the location of singleton consequent

fuzzy sets and µ
(
xi
)

stands for the clipping level after implication. Corresponding to

500 inputs available from the training data of time-series we will obtain 500 outputs

from the designed FLS. From time-series prediction problem the commonly used fitness

function is MSE which is calculated using (6.3).

MSE =

∑N
i=1

(
yi − di

)2
N

(6.3)

where N is the number training data, y is the output obtained from the designed FLS

and d is the true output from the system.

3. Selection

Selection is basically carried out in order to prefer the fittest solutions for the next

generation. Here the method used for selection is “Roulette Wheel” selection where

on rotating the Wheel once the probability of each parent chromosome being chosen

depends upon its fitness. The more will be the fitness of the parent chromosome, the

more area will it cover on the “Roulette Wheel” hence has the more probability of being

selected [Shi et al., 1999], [Sinha and Singh, 2014]. Hence selection favors the concept

of the “Survival of the Fittest”. The mechanism of selection is shown in Fig.6.2.

4. Crossover

After selection the crossover between the parent chromosomes is carried out resulting

into two new better off springs [Shi et al., 1999]. In order to carry out crossover
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Figure 6.2: Roulette Wheel Selection

between two individuals the crossover probability was first defined at 0.9 and a uniform

random number (r) between 0 and 1 was generated. If the uniform random number,

r generated is less than the crossover probability then the crossover between the two

individuals takes place otherwise no crossover takes place and the original copies of

parent chromosomes is reproduced in the next generation. Uniform crossover as shown

in Fig.6.3 is carried out at gene level using a mixing ratio of 0.8.
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Figure 6.3: Uniform Crossover

5. Mutation

After crossover the Mutation is carried out in order to reproduce better and better

chromosomes with more improved solutions then that produced by crossover as with

one point crossover their is a probability of two parents having same string at a given

gene and the population will have the same string at a given gene and the population

will have the same string forever if mutation is not carried out. Here the mutation is

carried out by varying the elements of the parent chromosomes. The elements here are

varied by 0.08 depending upon the uniform random number generated either greater

then or smaller then the mutation probability.

6. Elite

Elite solutions are applied in order to replace the worst chromosome in the population

with the best one preserved earlier depending upon its fitness.

7. Validation

The validation check is applied on the newly generated population depending upon the

range of the antecedents and the consequents of a FLS. The range for antecedent in
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this case is kept between 1 to 4 and for consequents the range is kept between 1-10.

Any element lying beyond this range will be changed to the nearest number in range

using validation check. Last but not the least the newly generated population is fed

back to the FLS as a new improved rule set. The population again undergoes selection,

crossover and mutation to produce new improved population with reduced vale of MSE.

So, GA iteratively improves the performance of the system by reducing the value of

MSE hence increasing the value of fitness level.

6.3 Conclusion

Implementation include flow of algorithm to find global optimal solution. The major imple-

mentation of algorithm consists generation of initial population, randomly generated numbers

to find global best solution, selection of parent solution, implementation of genetic operators

and elite solution and finally coping child population back to parent population. Results

obtained from the designed system are depicted in the next chapter.
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RESULTS AND DISCUSSION

This chapter presents the simulation results obtained from the designed systems. The system

performance was compared for different number of rules and the one with the best perfor-

mance was fixed for the purpose of time-series forecasting. At last the forecasted outputs

were compared with the true outputs obtained from the time-series data.

7.1 Introduction

The system was evolved for different number of rules i.e. 2, 4, 6, 8, 10, 15, 20, 25, 30, i.e,

the dimension size was kept 10, 20, 40, 50, 75, 100, 125, 150 as the number of antecedents

in each rule were four and single consequent. The experiments were performed for 1000 and

10,000 iterations. The system evolved with better performance when the number of rules

used were 10, i.e, the dimension size was 10× 5 = 50.

7.2 Experimental Setup

The experiments were conducted on Intel (R) Core (TM) i3-2328M CPU@2.20 GHz, Window

7 (Professional). The system code was written in Visual Studio C++ (2012 Release Mode)

and was compiled on nvcc compiler.
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7.2.1 Overall Performance Analysis

The designed FLS system was evolved for different number of rules keeping the inputs and

GA parameters constant and it was observed that on evolving the system using GA the

MSE which is the performance parameter of the system was minimized up to approximately

1.154 × 10−2 for 1000 iterations and 1.141 × 10−2 for 10,000 iterations and the resulting

time series obtained were very close to the desired time-series. It was also found from the

simulation results that the system with 10 rules, i.e, with dimension size 10× 5 = 50 evolved

with least value of MSE and hence performed better. The average value of MSE obtained

was found to be 1.1475× 10−2 using 10 rules in the rule set.

Table 7.1: Comparative MSEs with different rulebase sizes

 

Number of 

Fuzzy Rules 

Mean Square Error 

After 1000 

Iterations 

After 10,000 

Iterations 
Average 

2 0.09962 0.02032 0.05997 

4 0.02746 0.02764 0.02755 

6 0.01852 0.01842 0.01847 

8 0.01458 0.01314 0.01386 

10 0.01154 0.01141 0.011475 

15 0.01895 0.01907 0.01901 

20 0.04457 0.04327 0.04392 

25 0.07151 0.06945 0.07048 

30 0.09594 0.09309 0.094515 

The graphical representation of data shown in Table 7.1 is depicted in Fig.7.1.The forecasted

outputs obtained from the designed FLS using 10 rules in a Rule base were compared with

the actual Time-Series outputs.
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Figure 7.1: Minimum MSE obtained when FLS evolved for various number of rules.
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7.2.2 Performance Evaluation for 1000 Iterations

MSE between the actual and the forecasted outputs of the time-series was minimized upto

1.154 × 10−2 when system was evolved for 1000 iterations. The graphical representation of

the minimization of the MSE for 1000 iterations is shown in Fig. 7.2.
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Figure 7.2: Minimization of MSE for 1000 iterations.

7.2.3 Performance Evaluation for 10,000 Iterations

MSE was further minimized upto 1.141 × 10−2 when evolved for 10,000 iterations. The

graphical representation of the minimization of MSE for 10,000 iterations is shown in Fig. 7.3.
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Figure 7.3: Minimization of MSE for 1000 iterations.

7.2.4 Result Findings

Fig. 7.4 shows the comparison between the actual outputs and the forecasted outputs ob-

tained from the designed system. We see that the actual time-series values lie almost close
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to the forecasted time series, however, there lies a scope of further improvement in the time-

series waveform as there are some limitations in the forecasted outputs obtained from the

designed system.
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Figure 7.4: Comparison between the Actual and the Forecasted time series

7.3 Significant Investigation Findings

Significant improvements in the designed system can be highly useful to predict the future

behavior of the various dynamic systems in future. Not only using GA we can even evolve

the system using various other techniques like Particle Swarm Optimization (PSO). Various

applications involving the use of FLS can employ the technique of integration of FLS and

GA with highly efficient outputs.



CHAPTER 8

CONCLUSION AND FUTURE

SCOPE

Research is an iterative process very similar to GA where researchers keep testing ideas based

on their previous successes and the successes observed by other researchers in the area. The

work in this thesis is no exception. Various research observations are presented at the end

of each chapter as conclusions but limited to the scope of that chapter only. This chapter

aims to conclude the thesis, as a whole, and to aggregate all the offshoots found throughout

the work.

8.1 Introduction

One of the most important advantages of evolving Fuzzy Logic System using GA is that

the functions parameterized in a way which is interpretable for humans. The presented

application is an intelligent system designed to predict the time-series outputs. It offers

many advantages such as handling imprecision.

In previous chapters the demonstration of implementation of evolving FLS using GA has

been shown. The way of evolving rules in type-1 FLS using GA has been proposed. Also the

designed system is used for time-series prediction.

39
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8.2 Concluding statements

Following are brief statements to conclude this thesis as a whole:

1. It was found from the designed system that the forecasted outputs were very close to

the actual outputs of the time-series.

2. So, the designed FLS with 0db SNR proved to be the best time-series prediction and

forecasting outputs nearer to the actual outputs in a reasonable amount of time.

3. Using the designed system we are able to forecast the outputs in the reasonable amount

of time. Therefore, it is highly advantageous to evolve the FLS using GA for various

other applications.

8.3 Future Scope

Research is a never lasting process. However, this project has to be terminated here. Our

research will continue and followings may be our future research agenda:

1. Although the designed system for evolution of the best solution is very effective for

solving time-series problem, their execution time can become a limiting factor as it

involves large number of parameters that are to be determined making it computation-

ally intensive. In future implementing the same system on Graphic Processing Unit

using Compute Unified Design Architecture can help in increasing the execution speed

of the system.

2. The designed fuzzy logic system can also be evolved using some different evolutionary

algorithm technique like Particle Swarm Optimization

3. The architecture of evolving rule based model using GA approach can also be applied to

various other domains and the methodology can be applied in many other applications

involving wide range of classification.
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